If Δr=∣∣ ∣ ∣∣2n+12n+1n(n+2)11−1nCr2r2r+1∣∣ ∣ ∣∣then the value of n∑r=0Δr is
If f:(0,∞)→(0,∞) satisfy
f(xf(y))=x2y2(a∈R),then
∑nr=1−f(r)nCr is
n∑r=1n−1Cr−1 =