wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If Δ(x)=∣ ∣ ∣x2(x1)2x3x1x2(x+1)3x(x+1)2(x+2)3∣ ∣ ∣, find the absolute value of coefficient of x in Δ(x)

Open in App
Solution

Δ(x)=∣ ∣ ∣x2(x1)2x3x1x2(x+1)3x(x+1)2(x+2)3∣ ∣ ∣
Δ(x) polynomial of degree atmost 6 in x.

If Δ(x)=a0+a1x+a2x2+...+a6x6, then
Δ(x)=a1+2a2x+...+6a6x5a1=Δ(0)

Δ(x)=∣ ∣ ∣1(x1)2x31x2(x+1)31(x+1)2(x+2)3∣ ∣ ∣+∣ ∣ ∣x22(x1)x3x12x(x+1)3x2(x+1)(x+2)3∣ ∣ ∣+∣ ∣ ∣x2(x1)23x2x1x23(x+1)2x(x+1)23(x+2)2∣ ∣ ∣

Δ(0)=∣ ∣110101118∣ ∣+∣ ∣220101028∣ ∣+∣ ∣2101030112∣ ∣
=812+18=2
Absolute value of coefficient of x is 2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Composite Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon