If e(sin2x+sin4x+sin6x+.....∞)ln3, xϵ(0,π2) satisfies the equation t2−28t+27=0 then value of (cosx+sinx)−1 equals
\sin ce sin2x<1 for xϵ(0,π/2)
So, e(sin2x+sin4x+sin6x+.......∞)ln3 =e(sin2x1−sin2x)ln3
=e(tan2x)ln3 =eln3tan2x =3tan2x
Now roots of given quadratic equation is 1 and 27
and also xϵ(0,π/2), So
3tan2x=27 ⇒tanx=√3
⇒sinx=√32 and cosx=12
So, (sinx+cosx)−1=2√3+1 =2√3+1.√3−1√3−1 =√3−1
Hence, option 'A' is correct.