The correct option is A −12
Let t=cos2θ
Then ex=√1+cos2θ−√1−cos2θ√1+cos2θ+√1−cos2θ
=cosθ−sinθcosθ+sinθ=1−tanθ1+tanθ=tan(π4−θ)
tany2=√1−cos2θ1+cos2θ=tanθ
At t=12, cos2θ=12 or
θ=π6
Then x=logtanπ12, y=π3
Differentiating w.r.t. θ, exdxdθ=−sec2(π4−θ)
and 12sec2y2dydθ=sec2θ
∴dydx=dydθdxdθ=2sec2θcos2y2−e−xsec2(π4−θ)
At t=12, i.e.,
θ=π6, dydx=2sec2π6cos2π6⎛⎝−⎛⎝e−logtanπ12⎞⎠sec2π12⎞⎠
∴dydx=2−cotπ12sec2π12=−2tanπ12cos2π12=−sinπ6=−12