wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If f(2x)=f(2+x) and f(4x)=f(4+x) for all x and f(x) is a function for which 20f(x)dx=5, then 500f(x)dx is equal to

A
125
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
464f(x)dx
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
511f(x)dx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
522f(x)dx
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct options are
A 125
B 464f(x)dx
D 522f(x)dx
f(2x)=f(2+x),f(4x)=f(4+x) or f(4+x)=f(4x)=f(2+2x)=f(2(2x))=f(x)
Thus, the period of f(x) is 4.
500f(x)dx=480f(x)dx+5048f(x)dx=1240f(x)dx+20f(x)dx
[In second integral, replacing x by x + 48 and then using f(x)=f(x+48)]=12(20f(x)dx+20f(4x)dx)+5
=12(20f(x)dx+20f(4+x)dx)+5=2420f(x)dx+5=125
464f(x)dx=24f(x)dx+2+482f(x)dx=20f(x+4)dx+1240f(x)dx
=20f(x)dx+2420f(x)dx=125
Also, 522f(x)dx=42f(x)dx+4+484f(x)dx=20f(4x)dx+1240f(x)dx
=20f(4+x)dx+2420f(x)dx=20f(x)dx+2420f(x)dx=125
511f(x)dx=31f(x)dx+3+483f(x)dx=31f(x)dx+1240f(x)dx
=20f(x+1)dx+2420f(x)dx125

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Monotonicity
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon