If f(2a−x)=f(x) and ∫a0f(x)dx=λ, then ∫2a0f(x)dx is
∫a0f(x)dx=∫a0f(a−x)dx and ∫2a0f(x)dx=2∫a0f(x)dx If f(2a−x)=f(x)
(a)Prove that∫2a0f(x)dx=2∫a0f(X)dx,if f(2a−x)=f(x) and evaluate∫2π0cos5xdx if f(2a−x)=−f(x)
(b) Find the values of a and b such that the function defined by
f(x)=⎧⎪⎨⎪⎩5,if x≤2ax+bif 2<x<10 is a continous function21,if x≥10