If f(x) and g(x) be continuous functions over the closed interval [0,a] such that f(x)=f(a−x) and g(x)+g(a−x)=2. Then ∫a0f(x)˙g(x)dx is equal to
I=∫a0f(x).g(x)dx=∫a0f(a−x).g(a−x)dx=∫a0f(x).[2−g(x)]dx.....(∵f(a−x)=f(x)andg(a−x)=2−g(x))=∫a02f(x)dx−∫a0f(x).g(x)dx=∫a02f(x)dx−I
⇒2I=∫a02f(x)dx
⇒I=∫a0f(x)dx