If f(x)=cos−1(x−1−xx−1+x), then the value of f(0)+f′(0)+f′′(0)2!+...+fn(0)n! is
Given :
f(x)=cos−1(x−1−xx−1+x)
=cos−1⎛⎜
⎜
⎜⎝1x−x1x+x⎞⎟
⎟
⎟⎠
=cos−1⎛⎜
⎜
⎜⎝1−x2x1+x2x⎞⎟
⎟
⎟⎠
f(x)=cos−1(1−x21+x2)⇒f(0)=cos−1(1−01+0)=cos−1(1)=0
Differentiate w.r.t 'x'
i) f1(x)=−1√1−(1−x21+x2)×ddx(1−x21+x2)
=−1√1+x2−1+x21+x2×−2x(1+x2)−2x(1−x2)(1+x2)2
=−1√2x21+x2×−2x−2x3−2x+2x3(1+x2)(1+x2)
=−√1+x2√2x×−4x(1+x2)(1+x2)
=2√2(1+x2)(1+x2)
f1(x)=2√2(1+x2)32=2√2(1+x2)−32
f1(0)=2√2(1+0)32
f1(0)=2√2x=0
f11(x)=2√2⎡⎢⎣−32(1+x2)−32−1×2x⎤⎥⎦=2√2⎡⎢⎣−32(1+x2)−52×2x⎤⎥⎦=−6√2x(1+x2)−52f11(0)=0
f111(x)=−6√2x×−52(1+x2)−52−1×2x=−30√2x(1+x2)−72=0
Hence the further derivatives would also sum upto Zero ,since x=0
f(0)+f1(0)+f11(0)2!+.......fn(0)n!=0