f(x)=ex2−4x+3f′(x)=(ex2−4x+3).(2x−4)f′′(x)=(ex2−4x+3).2f′(x)is0atx=2andf′′(x)isalwayspositive.soatx=2f(x)isminimum.andx=[−5,5]thatmeansthatf(x)isdecreasingfrom[−5,2]andafterthatitisincreasingtillx=5.sof(−5)=e48andf(5)=e8sof(x)wouldbemax.atx=−5andlog(greatestvalueoff(x))=log(e48)=48.