If f(x)+f(1x)=0,f(e)=1;g(x)=f−1(x) then g′(x) equals
f(x)+f(1x)=0 is satisfied by f(x)=klnx, where k is a constant.
Given that f(e)=1⇒k=1
f(x)=lnx
⇒f−1x=ex
⇒g(x)=ex
⇒g′(x)=ex
Let f(x)=ex+sinx and g(x)=f−1(x),h(x)=g(x)+g′(x) then 4h(1) is : ___