wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If f′′(x)=cos(logx)x,f(1)=0 and y=f(2x+332x) then dydx is equal to

A
(sin(logx))1cosx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
sin(log(2x+332x))
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
12(32x)2sin(log(2x+332x))
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C 12(32x)2sin(log(2x+332x))
Given
f′′(x)=cos(logx)x, f(1)=0, & y=f(2x+332x)

Solution
f′′(x)=cos(logx)×1x

ddx[f(x)]=1xcos(logx)

d[f(x)]=cos(logx)×1x×dx

Let logx=t

1x=dtdx

dx=xdt

f(x)=cos(t)×dt

f(x)=sint+c

f(x)=sin(logx)+c

f(1)=0

c=0

f(x)=sin(logx)

Now, f(x)=sin(logx)

and y=f(2x+332x)

dydx=f(2x+332x)×(32x)×2(2x+3)×(2)(32x)2

f(2x+332x)×64x+4x+6(2x3)2

=f(2x+332x)×12(2x3)2

=f(2x+332x)×12(32x)2

dydx=12(32x)2×sin(log(2x+332x))

option c

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Special Integrals - 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon