wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If f(x)=ex1+ex,


I1=f(a)f(a)x.g{x(1x)}dx and I2=f(a)f(a)g{x(1x)}dx

then the value of I2/I1 is?

A
2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is D 2
f(a)+f(a)=ea1+ea+ea1+ea

=ea1+ea+11+ea

=1
Now
I1=f(a)f(a)xg(x(1x)).dx

Applying baf(x).dx=baf(a+bx).dx
Hence f(a)+f(a)=1
Hence
I1=f(a)f(a)xg(x(1x)).dx

=f(a)f(a)(f(a)+f(a)x)g((f(a)+f(a)x))(1(f(a)+f(a)x)))).dx

=f(a)f(a)(1x)g((1x)(x)).dx

=f(a)f(a)g(x(1x)).dxf(a)f(a)xg(x(1x)).dx

=I2I1

Hence
I1=I2I1
2I1=I2

I2I1=2.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative of Simple Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon