If f(x)=ex1+ex, I1=∫f(a)xg{x(1−x)}f(−a)dx and I2=∫f(a)g{x(1−x)}f(−a)dx then I2I1 equals
A
−1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
−3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C2 As f(x)=ex1+ex∴f(a)=ea1+ea and f(−a)=e−a1+e−a ∴f(−a)+f(a)=1 Now ∫f(a)f(−a)xg{x(1−x)}dx =∫f(a)f(−a)(1−x)g{(1−x)(x)}dx using ∫baf(x)dx=∫baf(a+b−x)dx ⇒2∫f(a)f(−a)xg{x(1−x)}dx=∫f(a)f(−a)g{(1−x)x}dx ⇒2I1=I2 ∴I2I1=21