Using expansion,
limx→0f(x)=limx→0(2x−(2x)33!+...)+a(x−x33!+...)+b(1−x22!+...)x3
=limx→0(2+a)x−bx22+x3(−86−a6)+...x3=finite
Above is posible only when 2+a=0
and b=0
∴a=−2,b=0 and limit is
−86−a6=−86+26=−1.
Since the function is to be continuous therefore Limit=value
∴f(0)=−1.