The correct option is B 1−x2
Given, 1(1+x)(1+x2)=A1+x+f(x)1+x2
Consider,1(1+x)(1+x2)=A1+x+Bx+C1+x2 ....(1)
⇒1=A(1+x2)+(Bx+C)(1+x)
⇒1=(A+B)x2+(B+C)x+(A+C)
⇒A+B=0,B+C=0,A+C=1
Solving these, we get
A=C=12,B=−12
Put these values in (1), we get
1(1+x)(1+x2)=12(1+x)+−x+12(1+x2)
Comparing this with (1), we get
f(x)=1−x2