If f(x)=logx1/9−log3x2(x>1), then max f(x) is equal to
Open in App
Solution
Let, y=logx1/9−log3x2(x>1) =logx(3−2)−2log3x=−2logx3−2log3x =−2(logx3+log3x) Now since x>1⇒log3x,logx3>0 Thus using, A.M≥G.M ⇒log3x+logx32≥√logx3log3x=1,[∵logab=1logba] Hence (−y)max=2×2=2