The correct option is C 12+[g(x)−x]2
f(x)=x+tanx⇢(i)g−1(x)=f(x)⇢(ii)f(g(x))=g(x)+tang(x)(fromequation(i))g−1(g(x))=g(x)+tang(x)(fromequation(ii))x=g(x)+tang(x)⇢(iii)(∵g−1(g(x))=x)
Differentiating the above equation w.r.t x,
1=g′(x)+(sec2g(x))g′(x)g′(x)=11+sec2g(x)=12+tan2g(x)(∵sec2g(x)=1+tan2g(x))fromeqn(iii),tang(x)=x−g(x)∴g′(x)=12+(x−g(x))2