If fn(x) be continuous at x=0 and fn(0)=4 then limx→02f(x)−3f(2x)+f(4x)x2=
Open in App
Solution
Let L=limx→02f(x)−3f(2x)+f(4x)x2 Clearly form of the limit is, 00 Thus applying L-Hospital's rule, L=limx→02f′(x)−6f′(2x)+4f′(4x)2x still 00 form So again applying L -Hospital's rule, L=limx→02f′′(x)−12f′′(2x)+16f′′(4x)2=3f′′(0)=12