wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If f(n)=nk=0(n2k)2C2k, then find f(6).

Open in App
Solution

We have
(n2k)2=(nk)2+k22k(nk)
Thus
nk=0(n2k)2C2k=nk=0(nk)2C2nk+nk=0k2C2k2nk=0k(nk)C2k
Ck=Cnk
But, k(nk)C2k=(k.Ck)((nk)Cnk)
n(n1Ck1)(nn1Cnk1)=n2(n1Ck1)(n1Ck)
Thus,
nk=0k(nk)C2k=n2n1k=1(n1Ck1)(n1Ck)=n2(2n2Cn)
Hence, nk=0(n2k)2C2k=(2n2)[(2n2)!(n1)!2(2n2)!n!(n2)!]=(2n)(2n2Cn1)
f(6)=12×10C5=3024

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Extrema
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon