If f(r)=1+12+13+.....+1r and f(0)=0, then value of n∑r=1(2r+1)f(r) is
A
n2f(n)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(n+1)2f(n+1)−n2+3n+22
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
(n+1)2f(n)−n2+n+12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(n+1)2f(n)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B(n+1)2f(n+1)−n2+3n+22 Since n∑r=1(2r+1)f(r)=n∑r=1(r2+2r+1−r2)f(r)=n∑r=1{(r+1)2−r2}f(r) =n∑r=1{(r+1)2f(r)−(r+1)2f(r+1)+(r+1)2f(r+1)−r2f(r)} =n∑r=1(r+1)2{f(r)−f(r+1)}+n∑r=1{(r+1)2f(r+1)−r2f(r)} =−n∑r=1(r+1)2(r+1)+n−1∑r=1(r+1)2f(r+1)+(n+1)2f(n+1)−n∑r=1r2f(r) =−n∑r=1(r+1)+{22f(2)+32f(3)+....+n2f(n)}+(n+1)2f(n+1)−{12f(1)+22f(2)+32f(3)+.....+n2f(n)} =−n∑r=1r−n∑r=11+((n+1)2f(n+1)−12f(1))=−n(n+1)2−n+(n+1)2f(n+1)−f(1) =(n+1)2f(n+1)−n(n+3)2−1=(n+1)2f(n+1)−(n2+3n+2)2