We can write f(x)=Aex+Be−x, where
A=1+∫10f(t)dt and B=∫10tf(t)dt
∴A=1+∫10(Aet+Be−t)dt
=(Aet+Be−t)t0
A=1+A(e1−1)−B(e−1−1)
⟹(2−e)A+(e−1−1)B=1 (i)
B=∫10t(Aet+Be−t)dt
=A(tet−et)t0+B(−te−t−e−t)10
B=A+B(1−2e−1)
⟹A−2e−1B=0 (ii)
From equations (i) and (ii), we get
A=2(e−1)4e−2e2, B=e−14−2e
Hence, f(x)=2(e−1)4e−2e2.ex+e−14−2e.e−x