wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If f(x)=ex+10(ex+tex)f(t)dt, then prove that f(x)=2(e1)4e2e2.ex+e142e.ex.

Open in App
Solution

We can write f(x)=Aex+Bex, where
A=1+10f(t)dt and B=10tf(t)dt
A=1+10(Aet+Bet)dt
=(Aet+Bet)t0
A=1+A(e11)B(e11)
(2e)A+(e11)B=1 (i)
B=10t(Aet+Bet)dt
=A(tetet)t0+B(tetet)10
B=A+B(12e1)
A2e1B=0 (ii)
From equations (i) and (ii), we get
A=2(e1)4e2e2, B=e142e
Hence, f(x)=2(e1)4e2e2.ex+e142e.ex

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Fundamental Theorem of Calculus
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon