if f(x)=ex1+ex,I1=∫f(a)f(−a)xg(x(1−x))dx, and I2=∫f(a)f(−a)g(x(1−x))dx,then the value of I2I1 is
A
−1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
−2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C2 f(x)=ex1+ex ∴f(a)=ea1+ea and f(−a)=e−a1+e−a=e−a1+1ea=11+ea ⇒f(a)+f(−a)=ea+11+ea=1 Let f(−a)=α or f(a)=1−α Now,I1=∫1−ααxg(x(1−x))dx ....(1) =∫1−αα(1−x)g((1−x)(1−(1−x)))dx I1=∫1−αα(1−x)g(x(1−x))dx .....(2) ∴2I1=∫1−ααg(x(1−x))dx=I2 ⇒I2I1=2