The correct option is A A+B=1
f(x)=sin3x+Asin2x+Bsinxx5;x≠0
limx→0f(x)=limx→0sin3x+Asin2x+Bsinxx5
It is of the form 00, so applying L-Hospital's rule
=limx→03cos3x+2Acos2x+Bcosx5x4
As x→0,Dr→0⇒Nr→0
limx→03cos3x+2Acos2x+Bcosx=0
⇒3+2A+B=0 .....(i)
Again limx→03cos3x+2Acos2x+Bcosx5x4 is of the form 00
=limx→0−9sin3x−4Asin2x−Bsinx20x3
Again of the form 00
=limx→0−27cos3x−8Acos2x−Bcosx60x2
As x→0,Dr→0⇒Nr→0
limx→0−27cos3x−8Acos2x−Bcosx=0
⇒27+8A+B=0 .....(ii)
Solving (i) and (ii), we get
A=−4,B=5
Thus, A+B=1