No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1+π2√2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
none of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A1+π2√2 f(x)=∫sinx0cos−1tdt+∫cosx0sin−1tdt =[cos−1tt]sinx0+∫sinx01√1−x2tdt +[sin−1t.t]cosx0−∫cosx01√1−x2.t.dt =(cos−1sinx)sinx−0+[−√1−t2]cosx0+(sin−1(cosx))cosx−0−[−√1−t2]cosx0=(cos−1sinx)sinx+(sin−1cosx)cosx−√1−sin2x+1+√1−cos2x−1=sinx(cos−1sinx)+cosx(sin−1cosx)−cosx+sinx ∴f(π4)=1+π2√2