If f(x)=⎧⎪ ⎪⎨⎪ ⎪⎩tan−1(x+[x])[x]−2x,[x]≠00,[x]=0 where [x] denotes the greatest integer less than or equal to x
Let f(x)=x(−1)[1x].x≠0, where [x] denotes the greatest integer less than or equal to x. then limx→0f(x)