If f(x)=⎧⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪⎩(1+|sinx|)a|sinx|;−π6<x<0b;x=0e(tan2xtan3x);0<x<π6 is a continuous function on (−π6,π6); then
A
a=23,b=e2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
a=13,b=e1/3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
a=23,b=e2/3
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
a=e2/3,b=23
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Ca=23,b=e2/3 f(x)=⎧⎪
⎪
⎪⎨⎪
⎪
⎪⎩(1+|sinx|)a|sinx|,π6<x<0b,x=0etan2xtan3x,0<x<π6 Since, f(x) is continuous at x=0 ∴RHL(atx=0)=LHL(atx=0)=f(0) ⇒limh→0etan2htan3h=limh→0{1+|sinh|}a|sinh|=b ⇒e23=ea=b ∴a=23 and b=e23