If f(x)=limn→∞n(x1n−1), then for x>0,y>0,f(xy) is equal to
f(x)=limn→∞n(x1n−1)
=limn→∞x1n−11n
=limm→0xm−1m (where 1n is replaced by m)
=lnx
ln(xy)=lnx+lny
⇒f(xy)=f(x)+f(y)