The correct option is D bn+1−an+1b−a
1(1−ax)(1−bx)=a0+a1x+a2x2+...
⇒1x(a−b)[11−ax−11−bx]=a0+a1x+a2x2+...
⇒1x(a−b)[1+ax+a2x2+..+an−1xn−1+..∞−(1+bx+b2x2+..+bn−1xn−1+..∞)]=a0+a1x+a2x2+...
⇒(a−b)+(a2−b2)x+(a3−b3)x2+....+(an+1−bn+1)xn+...∞a−b=a0+a1x+a2x2+...
Therefore, an=bn+1−an+1b−a