If 141.3+243.5+345.7+...+n4(2n−1).(2n+1)=148f(n)+n16(2n+1), then f(n) is equal to
1.3+3.5+5.7+....+(2n−1)(2n+1)=n(4n2+6n−1)6
1.3+3.5+5.7+⋯+(2n−1)(2n+1)=n(4n2+6n−1)3.