The correct option is B π2
Given, 1−cosxcosx(1+cosx)=sinαcosx−21+cosx ....(1)
Resolving into partial fractions,
1−cosxcosx(1+cosx)=Acosx+B1+cosx ....(2)
1−cosx=A(1+cosx)+Bcosx
1−cosx=A+(A+B)cosx
⇒A=1,B=−2
Put these values in (2)
1−cosxcosx(1+cosx)=1cosx−21+cosx
Comparing this with (1)
sinα=1
⇒α=π2