The correct options are
A a=87,b=−319343
B a=−87,b=319343
√4+ax=2(1+a4x)1/2=2[1+a/42x+12(−12)(a/4)2x22!+12(−12)−32(a/4)3x33!+...]..........(1)
−2(1−ax)−1/2=−2[1+a2x+12×32×12a2x2+1×3×523×3!a3x3+...].....(2)
Adding (1), (2) and 3ax4, we get
3ax4+√4+ax−2√1−ax
=2[−a2128−38a2]x2+2[3a364×8×6−3×5a38×6]x3+....
Comparing the coefficient of x2 with right hand side of the equation in the question we get
2[−a2128−38a2]=−1⇒a2=6449⇒a=±87......(3)
Now comparing the coefficient of x3, we get
2[3a364×8×6−3×5a38×6]=b⇒a38[164−5]=b⇒−31983a3=b
Using the value of a from (3), we get
b=−319343, when a=87
and,
b=319343, when a=−87