Given, 9xcosθ+5ysinθ=56 .....(1)
Also given, 9xsinθcos2θ−5ycosθsin2θ=0
9xsin3θ=5ycos3θ.
⇒cos3θ9x=sin3θ5y=k3 (say)
⇒cosθ=k(9x)1/3 and sinθ=k(5y)1/3 ....(2)
Squaring and adding, we get
1=cos2θ+sin2θ
⇒k2[(9x)2/3+(5y)2/3]=1
⇒k2=1[(9x)2/3+(5y)2/3]
Substitute the value from (2) in (1), we get
9xk(9x)1/3+5yk(5y)1/3=56 (by (1))
⇒(9x)2/3+(5y)2/3=56k
⇒[(9x)2/3+(5y)2/3]2=(56)2k2
⇒[(9x)2/3+(5y)2/3]2=(56)2(9x)2/3+(5y)2/3
⇒[(9x)2/3+(5y)2/3]3=(56)2=3136.