The correct options are
A a=3
C b=1
Given, ax+b(3x+4)2=13x+4−3(3x+4)2 ....(1)
Resolving into partial fractions
ax+b(3x+4)2=A3x+4+B(3x+4)2 .....(2)
ax+b(3x+4)2=A(3x+4)+B(3x+4)2
⇒ax+b=A(3x+4)+B
⇒a=3A,b=4A+B
⇒A=a3,B=b−4a3
Put these values in (2)
ax+b(3x+4)2=a3(3x+4)+3b−4a3(3x+4)2
Comparing this with (1),
a3=1,3b−4a3=−3
⇒a=3,b=1