wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cos4Acos2B+sin4Asin2B=1, then cos4Bcos2A+sin4Bsin2A is equal to

Open in App
Solution

Given, cos4Acos2B+sin4Asin2B=1=cos2A+sin2A

cos4Acos2Bcos2A=sin2Asin4Asin2B

cos2A(cos2Acos2B)cos2B=sin2A(sin2Bsin2A)sin2B

cos2Acos2B(cos2Acos2B)=sin2Asin2B[(1cos2B)(1cos2A)]

cos2Acos2B(cos2Acos2B)=sin2Asin2B(cos2Acos2B)

(cos2Acos2B)(cos2Acos2Bsin2Asin2B)=0

When cos2Acos2B=0, we have
cos2A=cos2B (i)

When cos2Acos2Bsin2Asin2B=0, we have

cos2Asin2B=sin2Acos2B

cos2A(1cos2B)=(1cos2A)cos2B

cos2Acos2Acos2B=cos2Bcos2Acos2B

cos2A=cos2B (ii)

Thus, in both the cases, cos2A=cos2B.

1sin2A=1sin2B or sin2A=sin2B (iii)

cos4Bcos2A+sin4Bsin2A=cos4Bcos2B+sin4Bsin2B=cos2B+sin2B=1


Ans: 1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General Solutions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon