Given,
cos4Acos2B+sin4Asin2B=1=cos2A+sin2A
cos4Acos2B−cos2A=sin2A−sin4Asin2B
cos2A(cos2A−cos2B)cos2B=sin2A(sin2B−sin2A)sin2B
cos2Acos2B(cos2A−cos2B)=sin2Asin2B[(1−cos2B)−(1−cos2A)]
cos2Acos2B(cos2A−cos2B)=sin2Asin2B(cos2A−cos2B)
(cos2A−cos2B)(cos2Acos2B−sin2Asin2B)=0
When cos2A−cos2B=0, we have
cos2A=cos2B (i)
When cos2Acos2B−sin2Asin2B=0, we have
cos2Asin2B=sin2Acos2B
cos2A(1−cos2B)=(1−cos2A)cos2B
cos2A−cos2Acos2B=cos2B−cos2Acos2B
cos2A=cos2B (ii)
Thus, in both the cases, cos2A=cos2B.
∴ 1−sin2A=1−sin2B or sin2A=sin2B (iii)
cos4Bcos2A+sin4Bsin2A=cos4Bcos2B+sin4Bsin2B=cos2B+sin2B=1
Ans: 1