If cos(A−B)cos(A+B)+cos(C+D)cos(C−D)=0, then tanA tanBtanC=
cos(A−B)cos(A+B)+cos(C+D)cos(C−D)=1+tanAtanB1−tanAtanB+1−tanCtanD1+tanCtanD
[cos(A−B)=cosAcosB+sinAsinB,cos(A+B)=cosAcosB−sinAsinB]
=1+tanCtanD+tanAtanB+tanAtanBtanCtanD+1−tanCtanD−tanAtanB+tanAtanBtanCtanD1+tanCtanD−tanAtanB−tanAtanBtanCtanD
=2+2tanAtanBtanCtanD(1+tanCtanD)(1−tanAtanB)=0
tanAtanBtanCtanD+1=0
⇒tanAtanBtanC=−cotD