If cos(A+B)cos(A−B)+cos(C−D)cos(C+D)=0, then cotAcotBcotC is equal to
Given, cos(A+B)cos(A−B)+cos(C−D)cos(C+D)=0
[cos(A+B)=cosAcosB−sinAsinB,cos(A−B)=cosAcosB+sinAsinB]
⇒1−tanAtanB1+tanAtanB+1+tanCtanD1−tanCtanD=0
⇒2(1+tanAtanBtanCtanD)(1+tanAtanB)(1−tanCtanD)=0
⇒tanAtanBtanCtanD=−1
⇒cotAcotBcotC=−tanD