cosαcosθ+sinαsinθ=cosβcosθ+sinβsinθ=1
From cosϕcosθ+sinϕsinθ=1
We have cosϕcosθ=1−sinϕsinθ
Squaring both sides
cos2ϕcos2θ=1+sin2ϕsin2θ−2sinϕsinθ
⇒sin2ϕsin2θ+sin2ϕcos2θ−2sin2ϕsinθ+1−1cos2θ=0
⇒(1sin2θ+1cos2θ)sin2ϕ−(2sin2θ)sinϕ−tan2θ=0
This is quadratic in sinϕ where sinα,sinβ as the root so
sinα,sinβ=−tan2θ(1sin2θ+1cos2θ)=−sin4θ
Also sinϕsinθ=1−cosϕcosθ
Squaring both sides
sin2ϕsin2θ=1+cos2ϕcos2θ−2cosϕcosθ
(1sin2θ+1cos2θ)cos2ϕ−(2cosθ)cosϕ−cot2θ=0
This is quadratic in cosϕ with cosα,cosβ as the roots so
cosαcosβ=−cot2θ(1cos2θ+1sin2θ)=cos4θ
∴cosαcosβcos2θ+sinαsinβsin2θ=1