If dydx+y√x2+a2=3x,y(0)=a2, then the value of y(√3a)a2.8−3√32−√3 is equal to
A
64
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
37
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
23
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
19
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B 37 dydx+y√x2+a2=3x ...(1) Let u=e∫1√a2+x2dx=√a2+x2+x Multiplying both sides of (1) by u (√a2+x2+x)dydx+(√a2+x2+x)y√x2+a2=3x(√a2+x2+x)⇒(√a2+x2+x)dydx+yddx(√a2+x2+x)=3x(√a2+x2+x) Using gdfdx+fdgdx=ddx(fg) ddx((√a2+x2+x)y)=3x(√a2+x2+x) Integrating both sides w.r.t.x (√a2+x2+x)y=x3+(a2+x2)3/2+c For y(0)=a2⇒(√a2+02+0)a2=03+(a2+02)3/2+c⇒a3=a3+c⇒c=0 Then for x=√3a (√a2+3a2+√3a)y(√3a)=(√3a)3+(a2+3a2)3/2⇒(2a+√3a)y(√3a)=3√3a3+8a3⇒y(√3a)=3√3a3+8a32a+√3a Therefore, y(√3a)a28−3√32−√3=3√3a3+8a32a+√3a×1a2×8−3√32−√3=37