We have ex1−x=(B0+B1x+B2x2+...+Bn−1xn−1+Bnxn+...)
⇒ ex=(1−x)(B0+B1x+B2x2+...+Bn−1xn−1+Bnxn+...)
⇒ (1+x+x22!+x33!+xnn!+...)
=(1−x)(B0+B1x+B2x2+...+Bn−1xn−1+Bnxn+...)
Comparing the coefficient of xn in both sides, we have
1n!=Bn−Bn−1
Hence Bn−Bn−1=1n!
⇒b=1