The correct option is D 7
Given, (ex+2)(ex−1)(2ex−3)=3ex−1+B2ex−3 ....(1)
Consider, (ex+2)(ex−1)(2ex−3)
Let ex=t and resolving into partial fractions
(t+2)(t−1)(2t−3)=At−1+B2t−3 ....(2)
t+2=A(2t−3)+B(t−1)
⇒2A+B=1,−3A−B=2
⇒A=−3,B=7
Put this value in (2)
(t+2)(t−1)(2t−3)=−3t−1+72t−3
(ex+2)(ex−1)(2ex−3)=−3ex−1+72ex−3