wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If logxbc=logyca=logzab
Prove:
(i) xyz=1
(ii) xaybzc=1
(iii) xb+cyc+aza+b=1.

Open in App
Solution

Let logxbc=logyca= logzab=k.

logx=k(bc),logy=k(ca) and logz=k(ab).

1. log(xyz)=logx+logy+logz=k(bc+ca+ab).
That gives us log(xyz)=0 or xyz=1

2. a.logx+b.logy+c.logz=k(abac+bcba+cacb).
This implies log(xaybzc)=0 or xaybzc=1.

3. (b+c).logx+(c+a).logy+(a+b).logz=k(b2c2+c2a2+a2b2).
This implies log(xb+cyc+aza+b)=0 or xb+cyc+aza+b=1.

Hence proved

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Fundamental Laws of Logarithms
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon