1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard IX
Mathematics
Fundamental Laws of Logarithms
If log x/b-...
Question
If
log
x
b
−
c
=
log
y
c
−
a
=
log
z
a
−
b
Prove:
(i)
x
y
z
=
1
(ii)
x
a
y
b
z
c
=
1
(iii)
x
b
+
c
y
c
+
a
z
a
+
b
=
1
.
Open in App
Solution
Let
log
x
b
−
c
=
log
y
c
−
a
=
log
z
a
−
b
=
k
.
log
x
=
k
(
b
−
c
)
,
log
y
=
k
(
c
−
a
)
and
log
z
=
k
(
a
−
b
)
.
1.
log
(
x
y
z
)
=
log
x
+
log
y
+
log
z
=
k
(
b
−
c
+
c
−
a
+
a
−
b
)
.
That gives us
log
(
x
y
z
)
=
0
or
x
y
z
=
1
2.
a
.
log
x
+
b
.
log
y
+
c
.
log
z
=
k
(
a
b
−
a
c
+
b
c
−
b
a
+
c
a
−
c
b
)
.
This implies
log
(
x
a
y
b
z
c
)
=
0
or
x
a
y
b
z
c
=
1
.
3.
(
b
+
c
)
.
log
x
+
(
c
+
a
)
.
log
y
+
(
a
+
b
)
.
log
z
=
k
(
b
2
−
c
2
+
c
2
−
a
2
+
a
2
−
b
2
)
.
This implies
log
(
x
b
+
c
y
c
+
a
z
a
+
b
)
=
0
or
x
b
+
c
y
c
+
a
z
a
+
b
=
1
.
Hence proved
Suggest Corrections
0
Similar questions
Q.
If
log
x
b
−
c
=
log
y
c
−
a
=
log
z
a
−
b
. show that
(
i
)
x
y
z
=
1
(
i
i
)
x
a
y
b
z
c
=
1
(
i
i
i
)
x
b
+
c
y
c
+
a
z
a
+
b
=
1
Q.
If
log
x
b
−
c
=
log
y
c
−
a
=
log
z
a
−
b
, then which of the following is/are true?