The correct option is C θ=12[α−tan−1(n−mn+mtanα)]
Upon simplification, we get
m.sin(α−θ)cos(α−θ).cos2θ=n.sinθcosθ.cos2(α−θ)
mn=sinθ.cosθsin(α−θ).cos(α−θ)
mn=sin2θsin2(α−θ)
m−nm+n=sin2θ−sin(2(α−θ))sin2θ+sin(2(α−θ))
m−nm+n=2cosα.sin(2θ−α)2sinα.cos(2θ−α)
m−nm+n=cotα.tan(2θ−α)
tan(α)(m−nm+n))=tan(2θ−α)
tan−1(tan(α)(m−nm+n)))=2θ−α
α+tan−1(tan(α)(m−nm+n))=2θ
θ=12[α+tan−1(tan(α)(m−nm+n))]
=12[α+tan−1(tan(α)(−n−mm+n))]
=12[α+tan−1(−tan(α)(n−mm+n))]
=12[α−tan−1(tan(α)(n−mm+n))]