If sin22x+4sin4x−4sin2xcos2x4−sin22x−4sin2x=19 and 0<x<π, then the value of x is
Num=sin22x+4sin4x−4sin2x.cos2x
=4sin2x.cos2x−4sin4x−4sin2x.cos2x
=4sin4x ...(i)
4−sin22x−4sin2x
Den==4−4sin2x.cos2x−4sin2x
=4(sin2x+cos2x)−4sin2x.cos2x−4sin2x
=4cos2x−4sin2x.cos2x
=4cos2x(1−sin2x)
=4cos4x ...(ii)
Hence iii gives
tan4x=19
tan2x=±13
tan2x=−13 is not possible.
Hence
tanx=±1√3
x=π3 and
x=−π3,2π3.