If sin4x2+cos4x3=15 then
Given that
sin4x2+cos4x3=15
⇒3sin4x+2cos4x=65
⇒sin4x+2[sin4x+cos4x]=65
⇒sin4x+2[sin4x+cos4x+2sin2xcos2x−2sin2xcos2x]=65
⇒sin4x+2[(sin2x+cos2x)2−2sin2xcos2x]=65
⇒sin4x+2[1−2sin2xcos2x]=65
⇒sin4x+2−4sin2x(1−sin2x)=65
⇒25sin4x−20sin2x+10−6=0
⇒(5sin2x−2)2=0
⇒cos2x=35 and tan2x=23
Also sin8x8+cos8x27=2625+3625=5625=1125