If sinAsinB=√32and cosAcosB=√52,0<A,B<π2, then find the value of tanA+tanB
A
√5−√3√3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
√5−√3√5
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
√3+√5√5
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
√3+√5√3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B√3+√5√5 Given sinAsinB=√32and cosAcosB=√52 ⇒sinA=√32sinB and cosA=√52cosB Squaring and adding both equations, sin2A+cos2A=34sin2B+54sin2B ⇒3sin2B+5cos2B=4⇒cos2B=12⇒tan2B=1⇒tanB=1 Now using first equation, sinA=√32√2⇒tanA=√3√5 Hence tanA+tanB=√3+√5√5