Solve tan x+tan 2x+tan 3x=tan x tan 2x tan 3x.
OR
prove that cotπ24=√2+√3+√4+√6.
If tanx+tan(x+π3)+tan(x+2π3)=3, prove that 3tan x−tan3x1−3tan2 x=1.
Or
If sinθ=nsin(θ+2α), prove that tan(θ+α)=1+n1−ntanα.