If (x−1)2x3+x=Ax+Bx+Cx2+1, then A=...,B=...,C=...
If the equations x2+bx+c=0 and x2+cx+b=0(b≠c) have a common root, then :
If a+b+c=0, then Xa2b−1c−1⋅Xa−1b2c−1⋅Xa−1b−1c2 is equal to