The correct option is C 2
Given, (x2+1)(x2+2)(x2+3)=1x2+2+αx2+3 ....(1)
Resolving into partial fractions
(x2+1)(x2+2)(x2+3)=Ax+Bx2+2+Cx+Dx2+3 ....(2)
(x2+1)(x2+2)(x2+3)=(Ax+B)(x2+3)+(Cx+D)(x2+2)(x2+2)(x2+3)
⇒x2+1=(A+C)x3+(B+D)x2+(3A+2C)x+(3B+2D)
On comparing , we get
A+C=0,B+D=1,3A+2C=0,3B+2D=1
Solving these equations, we get
A=C=0 and B=−1,D=2
Put these values in (2)
(x2+1)(x2+2)(x2+3)=−1(x2+2)+2(x2+3)
On comparing with (1),
α=2