The correct option is C
12
x3(2x−1)(x+2)(x−3)= A+B(2x−1)+C(x+2)+D(x−3)
Cross multiplying,
x3=A(2x−1)(x+2)(x−3)+B(x+2)(x−3)+C(2x−1)(x−3)+D(2x−1)(x+2)
Substitute x=1/2 both sides
⇒1/8=B(5/2)(−5/2)⇒B=−1/50
Substitute x=−2 both sides,
⇒−8=C(−5)(−5)⇒C=−8/25
Substitute =3 both sides,
⇒27=D(5)(5)⇒D=27/25
Now put x=0 both sides,
⇒0=6A−6B+3C−2D
⇒6A=6B−3C+2D=−3/25+24/25+54/25=3⇒A=1/2
Hence option 'A' is correct choice.