The correct option is A x−1
Given, x3−6x2+10x−2x2−5x+6=f(x)+Ax−2+Bx−3 ....(1)
Consider, x3−6x2+10x−2x2−5x+6
Here, degree of numerator > degree of denominator
x3−6x2+10x−2x2−5x+6=x−1+−x−2x2−5x+6 ....(2)
Resolving −x−2x2−5x+6 into partial fractions
−x−2x2−5x+6=−x−2(x−2)(x−3)=Ax−2+Bx−3 .....(3)
Put this in (2), we get
x3−6x2+10x−2x2−5x+6=x−1+Ax−2+Bx−3 .....(4)
Comparing with (1), f(x)=x−1
From (3), it follows
⇒−x−2=A(x−3)+B(x−2)
⇒−x−2=(A+B)x+(−3A−2B)
A+B=−1,−3A−2B=−2
Solving these equations, we get
A=4,B=−5
Hence, option A is correct